Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Particuology ; 80:157-169, 2023.
Article in English | Web of Science | ID: covidwho-2308417

ABSTRACT

With the outbreak of COVID-19, disinfection protection has become a necessary measure to prevent infection. As a new type of disinfectant, potassium peroxymonosulfate compound salt (PMS) has the advantages of good bactericidal effect, non-toxicity, high safety and stability. However, the current PMS products with irregular particle shapes lead to poor flowability, high hygroscopicity, poor stability of reactive oxygen species (ROS) and serious caking problems. In this work, an agglomeration-dissolution mechanism was designed to prepare spherical PMS particles with large size (>300 mm) and high sphericity (up to 90%), effectively addressing the above problems. Shaping (dissolution and abrasion) is the key to improving sphericity, which is mainly controlled by the design of the heating mode, residence time and stirring rate. Compared with the irregular PMS particles, the large spherical particles present better flowability (angle of repose decreased by 35.80%, Carr's index decreased by 64.29%, Hausner's ratio decreased by 19.14%), lower hygroscopicity (decreased by 38.0%), lower caking ratio (decreased by 84.50%), and higher stability (the monthly loss of ROS was reduced by 61.68%). The agglomeration -dissolution mechanism demonstrates the crystallization, agglomeration, dissolution and abrasion pro-cess of inorganic salt crystals, providing an opportunity to prepare high-end inorganic crystal materials with high-quality morphologies.(c) 2022 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

2.
Sensors and Actuators B: Chemical ; : 133544.0, 2023.
Article in English | ScienceDirect | ID: covidwho-2239732

ABSTRACT

Polymers have attracted attention as luminophores due to their excellent electrochemiluminescence (ECL) properties. However, the current research and application of polymers mainly focus on anode emission, and ECL efficiency is not high enough, thus showing a limited application. This work exploited the persulfate-mediated dual-emission characteristics of poly[2,5-dioctyl-1,4-phenylene] polymer nanoparticles (PDP PNPs). The two ECL emissions were collected synchronously at -2.0V and +1.0V with persulfate (S2O82-) as cathodic coreactant and 3-(dibutylamino) propylamine (TDBA) as anodic coreactant, respectively. Interestingly, S2O82- can simultaneously mediate the double emissions, significantly enhancing both cathode emission and anode emission. The dual-emission mechanism was explored carefully and enhancement mechanism of cathodic coreactant S2O82- to anodic emission was hypothesized to be attributed to SO4∙− radicals, which was produced from S2O82- during cathodic potential scanning and oxidized PDP PNPs to generate more cation radical, thus enhancing anodic emission of PDP PNPs. Moreover, the black hole quencher-2 (BHQ2) was exploited as dual-function moderator to quench dual emissions of PDP PNPs synchronously. PDP PNPs coupled with BHQ2 to build ECL ratiometric system for detecting SARS-CoV-2 RdRp gene and its limit of detection was 25.1 aM. Persulfate-mediated double emissions provided a new way to improve the efficiency of ECL emission from polymers and expand their application. The clever integration of dual-emitting PDP PNPs and dual-regulating BHQ2 created a promising single-luminophore-based ratiometric ECL platform, developed an attractive ECL method for detecting SARS-CoV-2 RdRp gene.

3.
J Environ Chem Eng ; 10(6): 108641, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2041923

ABSTRACT

Chloroquine Phosphate (CP) is an antiviral drug used for treatment of COVID-19. It is released into wastewater and eventually contaminates natural water. This study reports an effective homogeneous catalysis way for CP degradation by the 2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) enhanced persulfate (PDS) activation under UVB-LEDs irradiation at 305 nm. TEMPO at a low concentration (0.1 µM) enhanced CP degradation in UV305/PDS process in deionized water at different pHs, in different anions and different molecular weight dissolved organic matter solutions and in real surface water. The enhancement was verified to be attributed to the electron shuttle role of TEMPO, which promoted the yield of SO4 •- by enhancing electron donating capacity of the reacting system. The degradation products of CP and their acute toxicities suggested that UV305/PDS/TEMPO process has better performance on CP detoxification than UV305/PDS process. This study provides a new way to tackle the challenge of pharmaceutical pollutions in homogeneous photocatalysis process for natural water and sewage restoration.

4.
Huan Jing Ke Xue ; 43(9): 4597-4607, 2022 Sep 08.
Article in Chinese | MEDLINE | ID: covidwho-2025656

ABSTRACT

The degradation of chloroquine phosphate (CQP), an anti-COVID-19 drug, was investigated in a UV-activated persulfate system (UV/PS). The second-order rate constants of CQP with hydroxyl radicals (HO·) and sulfate radicals (SO4-·) were determined using a competition kinetics experiment, and the effects of persulfate concentration, pH, and inorganic anions on the degradation of CQP were also systematically studied. Furthermore, a kinetic model was established to predict the concentration of CQP and major free radicals to explore its mechanism of influence. The results showed that the degradation efficiency of CQP could reach 91.3% after 10 min under UV/PS, which was significantly higher than that under UV, sunlight, or PS alone. At pH=6.9, the second-order rate reaction constants of CQP with HO· and SO4-· were 8.9×109 L·(mol·s)-1and 1.4×1010 L·(mol·s)-1, respectively, and the main active species was SO4-·. The degradation rate of CQP increased with increasing concentrations of PS and decreased with the addition of HCO3- and Cl-. The removal efficiency of CQP was inhibited under stronger alkaline conditions. N-de-ethylation, cleavage of the C-N bond, and hydrogen abstraction were proposed as the principal pathways of CQP degradation based on LC-MS analysis. The mineralization rate of CQP could be improved by increasing PS concentration and pH values. This study could be helpful for the treatment of anti-COVID-19 pharmaceutical wastewater.


Subject(s)
Water Pollutants, Chemical , Chloroquine/analogs & derivatives , Hydroxyl Radical/analysis , Hydroxyl Radical/chemistry , Oxidation-Reduction , Wastewater/analysis , Water Pollutants, Chemical/analysis
5.
J Clean Prod ; 340: 130753, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1665150

ABSTRACT

With the global spread of the COVID-19 pandemic, the water pollution caused by extensive production and application of COVID-19 related drugs has aroused growing attention. Herein, a novel biochar-supported red mud catalyst (RM-BC) containing abundant free hydroxyl groups was synthesized. The RM-BC activated persulfate process was firstly put forward to degrade COVID-19 related drugs, including arbidol (ARB), chloroquine phosphate, hydroxychloroquine sulfate, and acyclovir. Highly effective removal of these pharmaceuticals was achieved and even 100% of ARB was removed within 12 min at optimum conditions. Mechanism study indicated that SO4 •- and HO• were the predominant radicals, and these radicals were responsible for the formation of DMPOX in electron spin resonance experiments. Fe species (Fe0 and Fe3O4) and oxygen-containing functional groups in RM-BC played crucial roles in the elimination of ARB. Effects of degradation conditions and several common water matrices were also investigated. Finally, the degradation products of ARB were identified by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and possible degradation pathways were proposed. This study demonstrated that RM-BC/PS system would have great potential for the removal of COVID-19 related drug residues in water by the catalyst synthesized from the solid waste.

SELECTION OF CITATIONS
SEARCH DETAIL